4.1 Divisibility and modular arithmetic

* Number theory: the branch of mathematics
involves integers and their properties

* |f aand b are integers with az0, we say that a
divides b if there is an integer c s.t. b=ac

* When a divides b we say that a is a factor of b
and that b is a multiple of a

 The notation a | b denotes a divides b. We
write a { b when does not divide b



Example

* Let n and d be positive integers. How many

nositive integers not exceeding n are divisible
oy d?

* The positive integers divisible by d are all
integers of them form dk, where k is a positive
Integer

* Thus, there are |n/d]| positive integers not
exceeding n that are divisible by d
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Theorem and corollary

* Theorem: Let a, b, and c be integers, then
—Ifa | bandal c, thena | (b+c)
—Ifa | b,and a | bc for all integers c
—Ifa|bandb | c,thena|c

e Corollary: Ifa, b, and care integerss.t.a | b
and a | ¢, then a | mb+nc whenever m and n
are integers



The division algorithm

 Let a beinteger and d be a positive integer. Then
there are unique integers gand r with0<r<d,

s.t. a=dqg+r

* In the equality, q is the quotient, r is the remainder
g=adivd,r=amodd

e -11 divided by 3

e -11=3(-4)+1, -4=-11 div 3, 1=-11 mod 3

e -11=3(-3)-2, but remainder cannot be negative



Modular arithmetic

* Ifaand b are integers and m is a positive integer,
then a is congruent to b modulo m if m divides a-b

 We use the notation a=b (mod m) to indicate that a
is congruent to b modulo m

* If a and b are not congruent modulo m, we write a
#b (mod m)

* Letaand b be integers, m be a positive integer.
Then a=b (mod m) if and only if a mod m = b mod m



Example

 Determine whether 17 is congruent to 5
modulo 6, and whether 24 and 14 are not
congruent modulo 6
— 17-5=12, we see 17=5 (mod 6)

— 24-14=10, and thus 24%14 (mod 6)



Theorem

 Karl Friedrich Gauss developed the concept
of congruences at the end of 18 century

* Let m be a positive integer. The integer a and
b are congruent modulo m if and only if there
is an integer k such that a=b+km

— (=) If a=b+km, then km=a-b, and thus m divides
a-b and so a=b (mod m)

— (<) if a=b (mod m), then m | a-b. Thus, a-b=km,
and so a=b+km




Theorem

* Let m be a positive integer. If a=b (mod m)
and c =d (mod m), then a+c=b+d (mod m) and
ac = bd (mod m)

— Since a = b (mod m) and c =d (mod m), there are
integers s.t. b=a+sm and d=c+tm

— Hence, b+d=(a+c)+m(s+t),
bd=(a+sm)(c+tm)=ac+m(at+cs+stm)

— Hence a+c = b+d (mod m), and ac = bd (mod m)



Example

e 7=2(mod5)and 11 =1 (mod 5), so
— 18=7+11 = 2+1=3 (mod 5)
— 77=7-11 =2-1=2(mod 5)



Corollary

 Let m be a positive integer and let a and b be
integers, then

(a+b) mod m=((a mod m) +(b mod m)) mod m
ab mod m = ((a mod m)(b mod m)) mod m

* Proof: By definitions mod m and congruence
modulo m, we know that a=(a mod m)(mod
m) and b=(b mod m)(mod m). Hence
— (a+b) =((a mod m)+(b mod m)) (mod m)

— ab = (a mod m)(b mod m)(mod m)
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4.2 Integer representations and algorithms

 Base b expansion of n

* Forinstance, (245),=2*8%+4*8+5=165

 Hexadecimal expansion of (2AEOB)16
(2AEOB),=2*16*+10*163+14*162+0*16+11=175627

e Constructing base b expansion
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Base conversion

e Constructing the base b expansion
n=bqyta,, 0 <a,<b

* The remainder a,, is the rightmost digit in the base b
expansion of n

* Next, divide q, by b to obtain
q,=bq,+a,, 0<a,<b

* We see a, is the second digit from the right in the
base b expansion of n

e Continue this process, successively dividing the
guotients by b, until the quotient is zero
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Example

* Find the octal base of (12345),,
e First, 12345=8*1543+1
e Successively dividing quotients by 8 gives
1543=8*192+7
192=8*24+0
24=8*3+0
3=8*0+3
* (12345),,=(30071),
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Modular exponentiation

* Need to find b" mod m efficiently in cryptography
* Impractical to compute b" and then mod m

* |nstead, find binary expansion of n first, e.g.,
n=(a, ... a; a)

bn _ bak_l-Zk_1+---+a1-2+a0 _ bak—l'zk_lbak—z'zk_zbal‘zbao

* To compute b", first find the values of b, b?, ...,
(b%)?=bs3, ...
* Next multiple the b* where a=1
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Example

* To compute 3%

* 11=(1011),,So 3%1=38 3231 First compute
32=9 and then 34=92=81, and
38=(34)%2=(81)%=6561, So
311=6561*%9*3=177147

* The algorithm successively finds b mod m, b?

mod m, b*mod m, ..., b mod m, and
multiply together those terms
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Algorithm

* procedure modular exponentiation (b:integer, n=(a,_,a, ,a,a,,
..., a,),, m:positive integer)

x:=1

power:=b mod m

fori:=0to k-1
if a, =1 then x:=(x- power) mod m
power:=(power-power) mod m

end

{x equals b" mod m}

* |t uses O((log m)? long n) bit operations
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Example

Compute 3%44 mod 645
— First note that 644=(1010000100),
— At the beginning, x=1, power=3 mod 645 = 3
— i=0, a,=0, x=1, power=3% mod 645=9
— i=1, a;=0, x=1, power=92 mod 645=81
— =2, a,=1, x=1*81 mod 645=81, power=812 mod 645=6561 mod 645=111
— i=3, 2;=0, x=81, power=111? mod 645=12321 mod 645=66
— =4, a,=0, x=81, power=662 mod 645=4356 mod 645=486
— i=5, a;=0, x=81, power=4862 mod 645=236196 mod 645=126
— =6, ag=0, x=81, power=1262 mod 645=15876 mod 645=396
— =7, a,=1, x=(81*396) mod 645=471, power=396> mod 645=156816 mod 645=81
— i=8, a4=0, x=471, power=81? mod 645=6561mod 645=111
— i=9, a5=1, x=(471*111) mod 645=36

3644 mod 645=36
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4.3 Primes and greatest common

divisions

* Prime: a positive integer p greater than 1 if
the only positive factors of pare 1 and p

* A positive integer greater than 1 that is not
prime is called composite

* Fundamental theorem of arithmetic: Every
positive integer greater than 1 can be written
uniquely as a prime or as the product of two
or more primes when the prime factors are
written in order of non-decreasing size
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Example

* Prime factorizations of integers
— 100=2:2-5-5=22-52
— 641=641
— 999=3-3-3-37=33-37
—1024=2-2-2-2-2-2-2-2-2-2=210
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Theorem

* Theorem: If nis a composite integer, then n has a
prime division less than or equal tovn

* As nis composite, n has a factor 1<a<n, and thus
n=ab

* We show that a<v/n or b </n (by contraposition)

* Thus n has a divisor not exceeding +/n

* This divisor is either prime or by the fundamental
theorem of arithmetic, has a prime divisor less than
itself, and thus a prime divisor less than less than +/n

e In either case, n has a prime divisor b < +/n
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Example

 Show that 101 is prime

 The only primes not exceeding 101 are 2, 3, 5,
7

 As 101 is not divisible by 2, 3, 5, 7, it follows
that 101 is prime
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Procedure for prime factorization

* Begin by diving n by successive primes, starting with 2
* If n has a prime factor, we would find a prime factor not

exceeding +/n
* If no prime factor is found, then n is prime

* Otherwise, if a prime factor p is found, continue by factoring n/p
* Note that n/p has no prime factors less than p

* |f n/p has no prime factor greater than or equal to p and not
exceeding its square root, then it is prime

e Otherwise, if it has a prime factor g, continue by factoring n/(pq)
* Continue until factorization has been reduced to a prime
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Example

Find the prime factorization of 7007
Start with 2, 3, 5, and then 7, 7007/7=1001

Then, divide 1001 by successive primes,
beginning with 7, and find 1001/7=143

Continue by dividing 143 by successive
primes, starting with 7, and find 143/11=13

As 13 is prime, the procedure stops
7007=7-7 -11 -13=7%-11 -13
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4.3 Theorem

* Theorem: There are infinitely many primes

* Proof by contradiction

* Assume that there are only finitely many
primes, p,, P, ..., P,,- Let Q=p,p,...p,+1

* By Fundamental Theorem of Arithmetic: Q is

prime or else it can be written as the product
of two or more primes
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Theorem

* However, none of the primes p; divides Q, for
if p; | Q, then p, divides Q-p, p, ... p, =1
* Hence, there is a prime not in the list p,, p,, ..,

Pn
e This prime is either Q, if it is prime, or a prime
factor for Q

 This is a contradiction as we assumed that we
have listed all the primes
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Mersenne primes

* As there are infinite number of primes, there
is an ongoing quest to find larger and larger
prime numbers

* The largest prime known has been an integer
of special form 2P-1 where p is also prime

* Furthermore, currently it is not possible to
test numbers not of this or certain other
special forms anywhere near as quickly as
determine whether they are prime
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Mersenne primes

o 22-1=3, 23-1=7, 2°>-1=31 are Mersenne primes while
211-1=2047 is not a Mersenne prime (2047=23 - 89)
 Mersenne claims that 2P-1 is prime for p=2, 3, 5, 7,
13,17, 19, 31, 67,127, 257 but is composite for all
other primes less than 257
— It took over 300 years to determine it is wrong 5 times
— For p=67, p=257, 2°-1is not prime
— But p=61, p=87, and p=107, 2P-1 is prime
* The largest Mersenne prime known (as of early 2011)
is 24311260571 '3 number with over 13 million digits
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Distribution of primes

* The prime number theorem: The ratio of the
number of primes not exceeding x and x/In x
approaches 1 as x grows without bound

e Can use this theorem to estimate the odds that a
randomly chosen number is prime

 The odds that a randomly selected positive integer
less than n is prime are approximately

(n/Inn)/n=1/Inn

* The odds that an integer near 10199 js prime are
approximately 1/In 10199, approximately 1/2300
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Open problems about primes

* Goldbach’s conjecture: every even integer n,
n>2, is the sum of two primes

4=2+2, 6=3+3, 8=5+3, 10=7+3, 12=7+5, ..

* As of 2011, the conjecture has been checked
for all positive even integers up to 1.6 1018

* Twin prime conjecture: Twin primes are
primes that differ by 2. There are infinitely
many twin primes
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Greatest common divisors

 Letaand b be integers, not both zero. The largest
integer d such thatd | aand d | bis called the
greatest common divisor (GCD) of a and b, often

denoted as gcd(a,b)

* The integers a and b are relative prime if their GCD is
1

gcd(10, 17)=1, gcd(10, 21)=1, gcd(10,24)=2

* Theintegers a,, a,, ..., a, are pairwise relatively
prime if gcd(a;, a;)=1 whenever 1 <i<j<n
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Prime factorization and GCD

* Finding GCD

a=prpst Py b= prpy e py
ged(a, b) = py7e) ppteete) .. pite )
120=2°-3-5, 500=2°.5°
gcd(120,500) = 22-3° -5 = 20
e Least common multiples of the positive
integers a and b is the smallest positive
integer that is divisible by both a and b,

denoted as lcm(a,b)
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Least common multiple

* Finding LCM

a=prpst Py, b=prpy e py

Icm(a’ b) — p:{nax(allbl) ;nax(aZ’bZ) .o pr:nax(an’bn)

120=2°.3.5,500=2°.5°
Icm(120,500) = 2°-3"-5° =8-3-125 = 3000

* Let a and b be positive integers, then
ab=gcd(a,b)-lcm(a,b)
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Euclidean algorithm

* Need more efficient prime factorization algorithm

 Example: Find gcd(91,287)

e 287=91-3+14

* Any divisor of 287 and 91 must be a divisor of 287-91 -3 =14

* Any divisor of 91 and 14 must also be a divisor of 287=91 - 3

* Hence, the gcd(91,287)=gcd(91,14)

* Next,91=14 - 6+7/

* Any divisor of 91 and 14 also divides 91- 14 - 6=7 and any
divisor of 14 and 7 divides 91, i.e., gcd(91,14)=gcd(14,7)

e 14=7-2,gcd(14,7)=7, and thus
gcd(287,91)=gcd(91,14)=gcd(14,7)=7
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Euclidean algorithm

* Lemma: Let a=bqg+r, where a, b, g, and r are integers. Then
gcd(a,b)=gcd(b,r)

* Proof: Suppose d divides both a and b. Recall if d|a and d|b,
then d|a-bk for some integer k. It follows that d also divides a-
bg=r. Hence, any common division of a and b is also a
common division of b and r

e Suppose that d divides both b and r, then d also divides
bg+r=a. Hence, any common divisor of b and r is also common
divisorofaand b

e Consequently, gcd(a, b)=gcd(b,r)
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Euclidean algorithm

* Suppose a and b are positive integers, a=b. Let ry=a
and r,=b, we successively apply the division

algorithm
L=rqg,+r,0<r, <

n=rq,+5n0<r<r,

rn—2 = n—1qn—1 + rn’O < rn < rn—1
rn—1 = r-nqn
ng(a’ b) = ng(ro’ rl) = ng(rl’ rz) - = ng(rn—Z’ Ifn—1)
= ng(rn—l’rn) - ng(rn ’0) - rn

 Hence, the gcd is the last nonzero remainder in the
sequence of divisions

35



Example

* Find the GCD of 414 and 662
662=414 - 1+248
414=248 - 1+166

248=166 - 1+82 a=bg
166=82 - 2 +2 ged(a,b)=ged(b.r)
82=2-41

gcd(414,662)=2 (the last nonzero remainder)
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The Euclidean algorithm

e procedure gcd(a, b: positive integers)
X:=a
y:=b
while (y=0)
begin
r:=x mody
X:=y
Vi=r
end {gcd(a,b)=x}

 The time complexity is O(log b) (where a > b)
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4.5 Applications of congruence

e Hashing function: h(k) where k is a key

 One common function: h(k)=k mod m where m is the
number of available memory location

* For example, m=111,
— h(064212848)=064212848 mod 111=14
— h(037149212)=037149212 mod 111=65
* Not one-to-one mapping, and thus needs to deal
with collision
— h(107405723)=107405723 mod 111 =14
— Assign to the next available memory location
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Pseudorandom numbers

 Generate random numbers

 The most commonly used procedure is the
linear congruential method

— Modulus m, multiple a, increment c, and seed x,,
with 2<a<m, 0 <c<m, and 0<x,<m

— Generate a sequence of pseudorandom numbers
{x,} with 0 < x, < m for all n, by

X,,1=(ax, +c) mod m
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Example

* Letm=9, a=7, c=4, x,=3
— X;=7%y+4 mod 9=(21+4) mod 9=25 mod 9 =7
— X,=7%,+4 mod 9=(49+4) mod 9=53 mod 9 = 8
— X4=7%,+4 mod 9=(56+4) mod 9=60 mod 9 = 6 Xns1=(aX,y*C) mod m
— X,=7X%3+4 mod 9=(42+4) mod 9=46 mod 9 =1
— Xc=7X%,+4 mod 9=(7+4) mod 9=11 mod 9 = 2
— Xg=7X%s+4 mod 9=(14+4) mod 9=18 mod 9 =0
— X;=7Xg+4 mod 9=(0+4) mod 9=4 mod 9 =4
— Xg=7/%,+4 mod 9=(28+4) mod 9=32 mod 9 =5
— Xg=7Xg+4 mod 9=(35+4) mod 9=11 mod 9 =3

e Asequenceof3, 7,8,6,1,2,0,4,5,3,7,8,6,1,2,0,4,5, 3, ..
e Contains 9 different numbers before repeating
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4.6 Cryptology

* One of the earliest known use is by Julius
Caesar, shift each letter by 3

f(p)=(p+3) mod 26

— Translate “meet you in the park”

—124419 241420 813 1974 1501710
—157722 11723 1116 22107 1832013
— “phhw brx lq wkh sdun”

— To decrypt, f1(p)=(p-3) mod 26
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Example

* Other options: shift each letter by k
— f(p)=(p+k) mod 26, with f1(p)=(p-k) mod 26
— f(p)=(ap+k) mod 26
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RSA cryptosystem

* Each individual has an encryption key consisting of a modulus
n=pq, where p and g are large primes, say with 200 digits
each, and an exponent e that is relatively prime to (p-1)(g-1)
(i.e., gcd(e, (p-1)(9-1))=1)

* To transform M: Encryption: C=M¢ mod n, Decryption: C¢=M
(mod pq)

* The product of these primes n=pq, with approximately 400
digits, cannot be factored in a reasonable length of time (the
most efficient factorization methods known as of 2005 require
billions of years to factor 400-digit integers)
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