
4.1 Divisibility and modular arithmetic

• Number theory: the branch of mathematics 
involves integers and their properties

• If a and b are integers with a≠0, we say that a 
divides b if there is an integer c s.t. b=ac

• When a divides b we say that a is a factor of b 
and that b is a multiple of a 

• The notation a | b denotes a divides b. We 
write a ∤ b when does not divide b
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Example

• Let n and d be positive integers. How many 
positive integers not exceeding n are divisible 
by d?

• The positive integers divisible by d are all 
integers of them form dk, where k is a positive 
integer

• Thus, there are             positive integers not 
exceeding n that are divisible by d
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Theorem and corollary

• Theorem: Let a, b, and c be integers, then

– If a | b and a| c, then a | (b+c)

– If a | b, and a | bc for all integers c

– If a | b and b | c, then a | c

• Corollary: If a, b, and c are integers s.t. a | b 
and a | c, then a | mb+nc whenever m and n 
are integers
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The division algorithm

• Let a be integer and d be a positive integer. Then 
there are unique integers q and r with 0 ≤ r < d, 

s.t. a=dq+r

• In the equality, q is the quotient, r is the remainder

q = a div d, r = a mod d

• -11 divided by 3

• -11=3(-4)+1, -4=-11 div 3, 1=-11 mod 3

• -11=3(-3)-2, but remainder cannot be negative
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Modular arithmetic

• If a and b are integers and m is a positive integer, 
then a is congruent to b modulo m if m divides a-b

• We use the notation a≡b (mod m) to indicate that a 
is congruent to b modulo m 

• If a and b are not congruent modulo m, we write a 
≢b (mod m)

• Let a and b be integers, m be a positive integer. 
Then a≡b (mod m) if and only if a mod m = b mod m

5



Example

• Determine whether 17 is congruent to 5 
modulo 6, and whether 24 and 14 are not 
congruent modulo 6

– 17-5=12, we see 17≡5 (mod 6)

– 24-14=10, and thus 24≢14 (mod 6)

6



Theorem

• Karl Friedrich Gauss developed the concept 
of congruences at the end of 18th century

• Let m be a positive integer. The integer a and 
b are congruent modulo m if and only if there 
is an integer k such that a=b+km

– () If a=b+km, then km=a-b, and thus m divides 
a-b and so a≡b (mod m)

– () if a≡b (mod m), then m | a-b. Thus, a-b=km, 
and so a=b+km
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Theorem

• Let m be a positive integer. If a ≡ b (mod m) 
and c ≡ d (mod m), then a+c=b+d (mod m) and 
ac ≡ bd (mod m)

– Since a ≡ b (mod m) and c ≡ d (mod m), there are 
integers s.t. b=a+sm and d=c+tm

– Hence, b+d=(a+c)+m(s+t), 
bd=(a+sm)(c+tm)=ac+m(at+cs+stm)

– Hence a+c ≡ b+d (mod m), and ac ≡ bd (mod m)
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Example

• 7 ≡ 2 (mod 5) and 11 ≡ 1 (mod 5), so

– 18=7+11 ≡ 2+1=3 (mod 5)

– 77=7∙11 ≡2∙1=2(mod 5)
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Corollary

• Let m be a positive integer and let a and b be 
integers, then

(a+b) mod m=((a mod m) +(b mod m)) mod m

ab mod m = ((a mod m)(b mod m)) mod m

• Proof: By definitions mod m and congruence 
modulo m, we know that a≡(a mod m)(mod 
m) and b≡(b mod m)(mod m). Hence

– (a+b) ≡((a mod m)+(b mod m)) (mod m)

– ab ≡ (a mod m)(b mod m)(mod m)
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4.2 Integer representations and algorithms

• Base b expansion of n

• For instance, (245)8=2*82+4*8+5=165

• Hexadecimal expansion of (2AE0B)16

(2AE0B)16=2*164+10*163+14*162+0*16+11=175627

• Constructing base b expansion
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Base conversion

• Constructing the base b expansion

n=bq0+a0, 0 ≤a0<b

• The remainder a0, is the rightmost digit in the base b 
expansion of n

• Next, divide q0 by b to obtain

q0=bq1+a1, 0≤a1<b

• We see a1 is the second digit from the right in the 
base b expansion of n

• Continue this process, successively dividing the 
quotients by b, until the quotient is zero
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Example

• Find the octal base of (12345)10

• First, 12345=8*1543+1

• Successively dividing quotients by 8 gives

1543=8*192+7

192=8*24+0

24=8*3+0

3=8*0+3

• (12345)10=(30071)8
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Modular exponentiation

• Need to find bn mod m efficiently in cryptography

• Impractical to compute bn and then mod m

• Instead, find binary expansion of n first, e.g., 
n=(ak-1 … a1 a0)

• To compute bn , first find the values of b, b2, …, 
(b4)2=b8, …

• Next multiple the      where aj=1
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Example

• To compute 311 

• 11=(1011)2 ,So 311=38 32 31 . First compute 
32=9, and then 34=92=81, and 
38=(34)2=(81)2=6561, So 
311=6561*9*3=177147

• The algorithm successively finds b mod m, b2

mod m, b4 mod m, …,         mod m, and 
multiply together those terms
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Algorithm

• procedure modular exponentiation (b:integer, n=(ak-1ak-2a1a0, 
…, an)2, m:positive integer)

x := 1

power:=b mod m

for i:=0 to k-1

if ai =1 then x:=(x⋅ power) mod m

power:=(power⋅power) mod m

end 

{x equals bn mod m}

• It uses O((log m)2 long n) bit operations
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Example

• Compute 3644 mod 645
– First note that 644=(1010000100)2

– At the beginning, x=1, power=3 mod 645 = 3

– i=0, a0=0, x=1, power=32 mod 645=9

– i=1, a1=0, x=1, power=92 mod 645=81

– i=2, a2=1, x=1*81 mod 645=81, power=812 mod 645=6561 mod 645=111

– i=3, a3=0, x=81, power=1112 mod 645=12321 mod 645=66

– i=4, a4=0, x=81, power=662 mod 645=4356 mod 645=486

– i=5, a5=0, x=81, power=4862 mod 645=236196 mod 645=126

– i=6, a6=0, x=81, power=1262 mod 645=15876 mod 645=396

– i=7, a7=1, x=(81*396) mod 645=471, power=3962 mod 645=156816 mod 645=81

– i=8, a8=0, x=471, power=812 mod 645=6561mod 645=111

– i=9, a9=1, x=(471*111) mod 645=36

• 3644 mod 645=36
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4.3 Primes and greatest common 
divisions
• Prime: a positive integer p greater than 1 if 

the only positive factors of p are 1 and p

• A positive integer greater than 1 that is not 
prime is called composite

• Fundamental theorem of arithmetic: Every 
positive integer greater than 1 can be written 
uniquely as a prime or as the product of two 
or more primes when the prime factors are 
written in order of non-decreasing size
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Example

• Prime factorizations of integers

– 100=2∙2∙5∙5=22∙52

– 641=641

– 999=3∙3∙3∙37=33∙37

– 1024=2∙2∙2∙2∙2∙2∙2∙2∙2∙2=210
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Theorem

• Theorem: If n is a composite integer, then n has a 
prime division less than or equal to 

• As n is composite, n has a factor 1<a<n, and thus 
n=ab

• We show that a≤      or b ≤      (by contraposition)

• Thus n has a divisor not exceeding

• This divisor is either prime or by the fundamental 
theorem of arithmetic, has a prime divisor less than 
itself, and thus a prime divisor less than less than 

• In either case, n has a prime divisor b ≤ 
20
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Example

• Show that 101 is prime

• The only primes not exceeding          are 2, 3, 5, 
7

• As 101 is not divisible by 2, 3, 5, 7, it follows 
that 101 is prime 
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Procedure for prime factorization

• Begin by diving n by successive primes, starting with 2

• If n has a prime factor, we would find a prime factor not 
exceeding 

• If no prime factor is found, then n is prime

• Otherwise, if a prime factor p is found, continue by factoring n/p

• Note that n/p has no prime factors less than p

• If n/p has no prime factor greater than or equal to p and not 
exceeding its square root, then it is prime

• Otherwise, if it has a prime factor q, continue by factoring n/(pq)

• Continue until factorization has been reduced to a prime
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Example

• Find the prime factorization of 7007

• Start with 2, 3, 5, and then 7, 7007/7=1001

• Then, divide 1001 by successive primes, 
beginning with 7, and find 1001/7=143

• Continue by dividing 143 by successive 
primes, starting with 7, and find 143/11=13

• As 13 is prime, the procedure stops

• 7007=7∙7 ∙11 ∙13=72 ∙11 ∙13
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4.3 Theorem

• Theorem: There are infinitely many primes

• Proof by contradiction

• Assume that there are only finitely many 
primes, p1, p2, …, pn. Let Q=p1p2…pn+1

• By Fundamental Theorem of Arithmetic: Q is 
prime or else it can be written as the product 
of two or more primes
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Theorem

• However, none of the primes pj divides Q, for 
if pj | Q, then pj divides Q-p1 p2 … pn =1

• Hence, there is a prime not in the list p1, p2, …, 
pn

• This prime is either Q, if it is prime, or a prime 
factor for Q

• This is a contradiction as we assumed that we 
have listed all the primes
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Mersenne primes

• As there are infinite number of primes, there 
is an ongoing quest to find larger and larger 
prime numbers

• The largest prime known has been an integer 
of special form 2p-1 where p is also prime

• Furthermore, currently it is not possible to 
test numbers not of this or certain other 
special forms anywhere near as quickly as 
determine whether they are prime
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Mersenne primes

• 22-1=3, 23-1=7, 25-1=31 are Mersenne primes while 
211-1=2047 is not a Mersenne prime (2047=23 ∙ 89)

• Mersenne claims that 2p-1 is prime for p=2, 3, 5, 7, 
13, 17, 19, 31, 67, 127, 257 but is composite for all 
other primes less than 257

– It took over 300 years to determine it is wrong 5 times

– For p=67, p=257, 2p-1 is not prime

– But p=61, p=87, and p=107, 2p-1 is prime

• The largest Mersenne prime known (as of early 2011) 
is 243,112,609-1, a number with over 13 million digits
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Distribution of primes

• The prime number theorem: The ratio of the 
number of primes not exceeding x and x/ln x 
approaches 1 as x grows without bound

• Can use this theorem to estimate the odds that a 
randomly chosen number is prime

• The odds that a randomly selected positive integer 
less than n is prime are approximately 

(n/ ln n)/n=1/ln n 

• The odds that an integer near 101000 is prime are 
approximately 1/ln 101000, approximately 1/2300
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Open problems about primes

• Goldbach’s conjecture: every even integer n, 
n>2, is the sum of two primes

4=2+2, 6=3+3, 8=5+3, 10=7+3, 12=7+5, …

• As of 2011, the conjecture has been checked 
for all positive even integers up to 1.6 ⋅1018

• Twin prime conjecture: Twin primes are 
primes that differ by 2. There are infinitely 
many twin primes
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Greatest common divisors

• Let a and b be integers, not both zero. The largest 
integer d such that d | a and d | b is called the 
greatest common divisor (GCD) of a and b, often 
denoted as gcd(a,b)

• The integers a and b are relative prime if their GCD is 
1

gcd(10, 17)=1, gcd(10, 21)=1, gcd(10,24)=2

• The integers a1, a2, …, an are pairwise relatively 
prime if gcd(ai, aj)=1 whenever 1 ≤ i < j ≤ n
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Prime factorization and GCD

• Finding GCD

• Least common multiples of the positive 
integers a and b is the smallest positive 
integer that is divisible by both a and b, 
denoted as lcm(a,b)
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Least common multiple

• Finding LCM

• Let a and b be positive integers, then

ab=gcd(a,b)∙lcm(a,b)
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Euclidean algorithm

• Need more efficient prime factorization algorithm

• Example: Find gcd(91,287)

• 287=91 ∙ 3 +14

• Any divisor of 287 and 91 must be a divisor of 287- 91 ∙ 3 =14

• Any divisor of 91 and 14 must also be a divisor of 287= 91 ∙ 3 

• Hence, the gcd(91,287)=gcd(91,14)

• Next, 91= 14 ∙ 6+7

• Any divisor of 91 and 14 also divides 91- 14 ∙ 6=7 and any 
divisor of 14 and 7 divides 91, i.e., gcd(91,14)=gcd(14,7)

• 14= 7 ∙ 2, gcd(14,7)=7, and thus 
gcd(287,91)=gcd(91,14)=gcd(14,7)=7 
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Euclidean algorithm

• Lemma: Let a=bq+r, where a, b, q, and r are integers. Then 
gcd(a,b)=gcd(b,r)

• Proof: Suppose d divides both a and b. Recall if d|a and d|b, 
then d|a-bk for some integer k. It follows that d also divides a-
bq=r. Hence, any common division of a and b is also a 
common division of b and r

• Suppose that d divides both b and r, then d also divides 
bq+r=a. Hence, any common divisor of b and r is also common 
divisor of a and b

• Consequently, gcd(a, b)=gcd(b,r)
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Euclidean algorithm

• Suppose a and b are positive integers, a≥b. Let r0=a 
and r1=b, we successively apply the division 
algorithm

• Hence, the gcd is the last nonzero remainder in the 
sequence of divisions
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Example

• Find the GCD of 414 and 662

662=414 ∙ 1+248

414=248 ∙ 1+166

248=166 ∙ 1+82

166=82 ∙ 2 + 2

82=2 ∙ 41

gcd(414,662)=2 (the last nonzero remainder)

36

a=bq+r

gcd(a,b)=gcd(b,r)



The Euclidean algorithm

• procedure gcd(a, b: positive integers)

x := a

y:=b

while (y≠0)

begin

r:=x mod y

x:=y

y:=r

end {gcd(a,b)=x}

• The time complexity is O(log b) (where a ≥ b)
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4.5 Applications of congruence

• Hashing function: h(k) where k is a key

• One common function: h(k)=k mod m where m is the 
number of available memory location

• For example, m=111, 

– h(064212848)=064212848 mod 111=14

– h(037149212)=037149212 mod 111=65

• Not one-to-one mapping, and thus needs to deal 
with collision

– h(107405723)=107405723 mod 111 = 14

– Assign to the next available memory location
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Pseudorandom numbers

• Generate random numbers

• The most commonly used procedure is the 
linear congruential method

– Modulus m, multiple a, increment c, and seed x0, 
with 2≤a<m, 0 ≤c<m, and 0≤x0<m

– Generate a sequence of pseudorandom numbers 
{xn} with 0 ≤ xn < m for all n, by 

xn+1=(axn+c) mod m
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Example

• Let m=9, a=7, c=4, x0=3
– x1=7x0+4 mod 9=(21+4) mod 9=25 mod 9 = 7

– x2=7x1+4 mod 9=(49+4) mod 9=53 mod 9 = 8

– x3=7x2+4 mod 9=(56+4) mod 9=60 mod 9 = 6

– x4=7x3+4 mod 9=(42+4) mod 9=46 mod 9 = 1

– x5=7x4+4 mod 9=(7+4) mod 9=11 mod 9 = 2

– x6=7x5+4 mod 9=(14+4) mod 9=18 mod 9 = 0

– x7=7x6+4 mod 9=(0+4) mod 9=4 mod 9 = 4

– x8=7x7+4 mod 9=(28+4) mod 9=32 mod 9 =5

– x9=7x8+4 mod 9=(35+4) mod 9=11 mod 9 = 3

• A sequence of 3, 7, 8, 6, 1, 2, 0, 4, 5, 3, 7, 8, 6, 1, 2, 0, 4, 5, 3, …

• Contains 9 different numbers before repeating
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4.6 Cryptology

• One of the earliest known use is by Julius 
Caesar, shift each letter by 3

f(p)=(p+3) mod 26

– Translate “meet you in the park”

– 12 4 4 19    24 14 20   8 13   19 7 4   15 0 17 10 

– 15 7 7 22   1 17 23   11 16   22 10 7   18 3 20 13

– “phhw brx lq wkh sdun”

– To decrypt, f-1(p)=(p-3) mod 26
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Example

• Other options: shift each letter by k

– f(p)=(p+k) mod 26, with f-1(p)=(p-k) mod 26

– f(p)=(ap+k) mod 26
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RSA cryptosystem

• Each individual has an encryption key consisting of a modulus 
n=pq, where p and q are large primes, say with 200 digits 
each, and an exponent e that is relatively prime to (p-1)(q-1) 
(i.e., gcd(e, (p-1)(q-1))=1)

• To transform M: Encryption: C=Me mod n, Decryption: Cd=M 
(mod pq)

• The product of these primes n=pq, with approximately 400 
digits, cannot be factored in a reasonable length of time (the 
most efficient factorization methods known as of 2005 require 
billions of years to factor 400-digit integers)
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