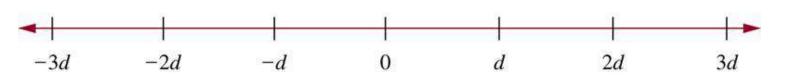
4.1 Divisibility and modular arithmetic

- Number theory: the branch of mathematics involves integers and their properties
- If a and b are integers with a≠0, we say that a divides b if there is an integer c s.t. b=ac
- When a divides b we say that a is a factor of b and that b is a multiple of a
- The notation a | b denotes a divides b. We write a \ b when does not divide b

- Let n and d be positive integers. How many positive integers not exceeding n are divisible by d?
- The positive integers divisible by d are all integers of them form dk, where k is a positive integer
- Thus, there are $\lfloor n/d \rfloor$ positive integers not exceeding n that are divisible by d

© The McGraw-Hill Companies, Inc. all rights reserved.



Theorem and corollary

- Theorem: Let a, b, and c be integers, then
 - If a | b and a | c, then a | (b+c)
 - If a | b, and a | bc for all integers c
 - If a | b and b | c, then a | c
- Corollary: If a, b, and c are integers s.t. a | b and a | c, then a | mb+nc whenever m and n are integers

The division algorithm

- Let a be integer and d be a positive integer. Then there are unique integers q and r with 0 ≤ r < d,
 s.t. a=dq+r
- In the equality, q is the quotient, r is the remainder
 q = a div d, r = a mod d
- -11 divided by 3
- -11=3(-4)+1, -4=-11 div 3, 1=-11 mod 3
- -11=3(-3)-2, but remainder cannot be negative

Modular arithmetic

- If a and b are integers and m is a positive integer,
 then a is congruent to b modulo m if m divides a-b
- We use the notation a≡b (mod m) to indicate that a
 is congruent to b modulo m
- Let a and b be integers, m be a positive integer.
 Then a≡b (mod m) if and only if a mod m = b mod m

- Determine whether 17 is congruent to 5 modulo 6, and whether 24 and 14 are not congruent modulo 6
 - -17-5=12, we see $17\equiv 5 \pmod{6}$
 - -24-14=10, and thus $24 \not\equiv 14 \pmod{6}$

Theorem

- Karl Friedrich Gauss developed the concept of congruences at the end of 18th century
- Let m be a positive integer. The integer a and b are congruent modulo m if and only if there is an integer k such that a=b+km
 - (→) If a=b+km, then km=a-b, and thus m divides
 a-b and so a≡b (mod m)
 - (←) if a≡b (mod m), then m | a-b. Thus, a-b=km, and so a=b+km

Theorem

- Let m be a positive integer. If a ≡ b (mod m)
 and c ≡ d (mod m), then a+c=b+d (mod m) and
 ac ≡ bd (mod m)
 - Since a ≡ b (mod m) and c ≡ d (mod m), there are integers s.t. b=a+sm and d=c+tm
 - Hence, b+d=(a+c)+m(s+t), bd=(a+sm)(c+tm)=ac+m(at+cs+stm)
 - Hence $a+c \equiv b+d \pmod{m}$, and $ac \equiv bd \pmod{m}$

- $7 \equiv 2 \pmod{5}$ and $11 \equiv 1 \pmod{5}$, so
 - $-18=7+11 \equiv 2+1=3 \pmod{5}$
 - $-77=7\cdot11 \equiv 2\cdot1=2 \pmod{5}$

Corollary

- Let m be a positive integer and let a and b be integers, then
 - $(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$ ab $\mod m = ((a \mod m)(b \mod m)) \mod m$
- Proof: By definitions mod m and congruence modulo m, we know that a≡(a mod m)(mod m) and b≡(b mod m)(mod m). Hence
 - $-(a+b) \equiv ((a \mod m)+(b \mod m)) \pmod m$
 - $-ab \equiv (a \mod m)(b \mod m)(\mod m)$

4.2 Integer representations and algorithms

- Base b expansion of n
- For instance, $(245)_8 = 2*8^2 + 4*8 + 5 = 165$
- Hexadecimal expansion of (2AE0B)16 $(2AE0B)_{16}=2*16^4+10*16^3+14*16^2+0*16+11=175627$
- Constructing base b expansion

Base conversion

- Constructing the base b expansion $n=bq_0+a_0$, $0 \le a_0 < b$
- The remainder a₀, is the rightmost digit in the base b expansion of n
- Next, divide q_0 by b to obtain $q_0=bq_1+a_1$, $0 \le a_1 < b$
- We see a₁ is the second digit from the right in the base b expansion of n
- Continue this process, successively dividing the quotients by b, until the quotient is zero

- Find the octal base of $(12345)_{10}$
- First, 12345=8*1543+1
- Successively dividing quotients by 8 gives

• $(12345)_{10} = (30071)_8$

Modular exponentiation

- Need to find bⁿ mod m efficiently in cryptography
- Impractical to compute bⁿ and then mod m
- Instead, find binary expansion of n first, e.g., $n=(a_{k-1} ... a_1 a_0)$ $b^n = b^{a_{k-1} \cdot 2^{k-1} + \cdots + a_1 \cdot 2 + a_0} = b^{a_{k-1} \cdot 2^{k-1}} b^{a_{k-2} \cdot 2^{k-2}} b^{a_1 \cdot 2} b^{a_0}$
- To compute bⁿ, first find the values of b, b², ...,
 (b⁴)²=b⁸, ...
- Next multiple the $b^{2^{j}}$ where $a_{i}=1$

- To compute 3¹¹
- $11=(1011)_2$, So $3^{11}=3^8$ 3^2 3^1 . First compute $3^2=9$, and then $3^4=9^2=81$, and $3^8=(3^4)^2=(81)^2=6561$, So $3^{11}=6561*9*3=177147$
- The algorithm successively finds b mod m, b^2 mod m, b^4 mod m, ..., $b^{2^{k-1}}$ mod m, and multiply together those terms

Algorithm

procedure modular exponentiation (b:integer, $n=(a_{k-1}a_{k-2}a_1a_0)$..., a_n)₂, m:positive integer) x := 1power:=b mod m **for** i:=0 to k-1 if $a_i = 1$ then x:=(x· power) mod m power:=(power·power) mod m end {x equals bⁿ mod m}

It uses O((log m)² long n) bit operations

16

- Compute 3⁶⁴⁴ mod 645
 - First note that 644=(1010000100)₂
 - At the beginning, x=1, power=3 mod 645 = 3
 - i=0, a₀=0, x=1, power=3² mod 645=9
 - i=1, a_1 =0, x=1, power=9² mod 645=81
 - i=2, a_2 =1, x=1*81 mod 645=81, power=81² mod 645=6561 mod 645=111
 - i=3, a_3 =0, x=81, power=111² mod 645=12321 mod 645=66
 - i=4, a_4 =0, x=81, power=66² mod 645=4356 mod 645=486
 - i=5, a_5 =0, x=81, power=486² mod 645=236196 mod 645=126
 - i=6, a₆=0, x=81, power=126² mod 645=15876 mod 645=396
 - i=7, a_7 =1, x=(81*396) mod 645=471, power=396² mod 645=156816 mod 645=81
 - i=8, a_8 =0, x=471, power=81² mod 645=6561mod 645=111
 - i=9, a₉=1, x=(471*111) mod 645=36
- 3⁶⁴⁴ mod 645=36

4.3 Primes and greatest common divisions

- Prime: a positive integer p greater than 1 if the only positive factors of p are 1 and p
- A positive integer greater than 1 that is not prime is called composite
- Fundamental theorem of arithmetic: Every positive integer greater than 1 can be written uniquely as a prime or as the product of two or more primes when the prime factors are written in order of non-decreasing size

- Prime factorizations of integers
 - $-100=2\cdot 2\cdot 5\cdot 5=2^2\cdot 5^2$
 - -641=641
 - $-999=3\cdot3\cdot3\cdot37=3^3\cdot37$
 - $-1024=2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2=2^{10}$

Theorem

- Theorem: If n is a composite integer, then n has a prime division less than or equal to \sqrt{n}
- As n is composite, n has a factor 1<a<n, and thus n=ab
- We show that $a \le \sqrt{n}$ or $b \le \sqrt{n}$ (by contraposition)
- Thus n has a divisor not exceeding \sqrt{n}
- This divisor is either prime or by the fundamental theorem of arithmetic, has a prime divisor less than itself, and thus a prime divisor less than \sqrt{n}
- In either case, n has a prime divisor $b \le \sqrt{n}$

- Show that 101 is prime
- The only primes not exceeding $\sqrt{101}$ are 2, 3, 5, 7
- As 101 is not divisible by 2, 3, 5, 7, it follows that 101 is prime

Procedure for prime factorization

- Begin by diving n by successive primes, starting with 2
- If n has a prime factor, we would find a prime factor not exceeding \sqrt{n}
- If no prime factor is found, then n is prime
- Otherwise, if a prime factor p is found, continue by factoring n/p
- Note that n/p has no prime factors less than p
- If n/p has no prime factor greater than or equal to p and not exceeding its square root, then it is prime
- Otherwise, if it has a prime factor q, continue by factoring n/(pq)
- Continue until factorization has been reduced to a prime

- Find the prime factorization of 7007
- Start with 2, 3, 5, and then 7, 7007/7=1001
- Then, divide 1001 by successive primes, beginning with 7, and find 1001/7=143
- Continue by dividing 143 by successive primes, starting with 7, and find 143/11=13
- As 13 is prime, the procedure stops
- $7007=7.7 \cdot 11.13=7^2 \cdot 11.13$

4.3 Theorem

- Theorem: There are infinitely many primes
- Proof by contradiction
- Assume that there are only finitely many primes, p_1 , p_2 , ..., p_n . Let $Q=p_1p_2...p_n+1$
- By Fundamental Theorem of Arithmetic: Q is prime or else it can be written as the product of two or more primes

Theorem

- However, none of the primes p_j divides Q, for if p_j | Q, then p_j divides Q-p₁ p₂ ... p_n =1
- Hence, there is a prime not in the list p_1 , p_2 , ..., p_n
- This prime is either Q, if it is prime, or a prime factor for Q
- This is a contradiction as we assumed that we have listed all the primes

Mersenne primes

- As there are infinite number of primes, there is an ongoing quest to find larger and larger prime numbers
- The largest prime known has been an integer of special form 2^p-1 where p is also prime
- Furthermore, currently it is not possible to test numbers not of this or certain other special forms anywhere near as quickly as determine whether they are prime

Mersenne primes

- $2^2-1=3$, $2^3-1=7$, $2^5-1=31$ are Mersenne primes while $2^{11}-1=2047$ is not a Mersenne prime (2047=23 · 89)
- Mersenne claims that 2^p-1 is prime for p=2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 but is composite for all other primes less than 257
 - It took over 300 years to determine it is wrong 5 times
 - For p=67, p=257, 2^{p} -1 is not prime
 - But p=61, p=87, and p=107, 2^p-1 is prime
- The largest Mersenne prime known (as of early 2011) is $2^{43,112,609}$ -1, a number with over 13 million digits

Distribution of primes

- The prime number theorem: The ratio of the number of primes not exceeding x and x/ln x approaches 1 as x grows without bound
- Can use this theorem to estimate the odds that a randomly chosen number is prime
- The odds that a randomly selected positive integer less than n is prime are approximately (n/ln n)/n=1/ln n
- The odds that an integer near 10^{1000} is prime are approximately $1/\ln 10^{1000}$, approximately 1/2300

Open problems about primes

- **Goldbach's conjecture**: every even integer n, n>2, is the sum of two primes 4=2+2, 6=3+3, 8=5+3, 10=7+3, 12=7+5, ...
- As of 2011, the conjecture has been checked for all positive even integers up to $1.6 \cdot 10^{18}$
- Twin prime conjecture: Twin primes are primes that differ by 2. There are infinitely many twin primes

Greatest common divisors

- Let a and b be integers, not both zero. The <u>largest</u> integer d such that d | a and d | b is called the greatest common divisor (GCD) of a and b, often denoted as gcd(a,b)
- The integers a and b are relative prime if their GCD is
 - gcd(10, 17)=1, gcd(10, 21)=1, gcd(10,24)=2
- The integers a₁, a₂, ..., a_n are pairwise relatively prime if gcd(a_i, a_j)=1 whenever 1 ≤ i < j ≤ n

Prime factorization and GCD

Finding GCD

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}, b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$$

$$\gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_n^{\min(a_n,b_n)}$$

$$120 = 2^3 \cdot 3 \cdot 5, \quad 500 = 2^2 \cdot 5^3$$

$$\gcd(120,500) = 2^2 \cdot 3^0 \cdot 5^1 = 20$$

 Least common multiples of the positive integers a and b is the <u>smallest</u> positive integer that is divisible by both a and b, denoted as lcm(a,b)

Least common multiple

Finding LCM

$$a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}, b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$$

$$lcm(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_n^{\max(a_n,b_n)}$$

$$120 = 2^3 \cdot 3 \cdot 5,500 = 2^2 \cdot 5^3$$

$$lcm(120,500) = 2^3 \cdot 3^1 \cdot 5^3 = 8 \cdot 3 \cdot 125 = 3000$$

 Let a and b be positive integers, then ab=gcd(a,b)·lcm(a,b)

Euclidean algorithm

- Need more efficient prime factorization algorithm
- Example: Find gcd(91,287)
- 287=91 · 3 +14
- Any divisor of 287 and 91 must be a divisor of 287- $91 \cdot 3 = 14$
- Any divisor of 91 and 14 must also be a divisor of $287 = 91 \cdot 3$
- Hence, the gcd(91,287)=gcd(91,14)
- Next, 91= 14 · 6+7
- Any divisor of 91 and 14 also divides 91- 14 · 6=7 and any divisor of 14 and 7 divides 91, i.e., gcd(91,14)=gcd(14,7)
- 14= 7 · 2, gcd(14,7)=7, and thus gcd(287,91)=gcd(91,14)=gcd(14,7)=7

Euclidean algorithm

- Lemma: Let a=bq+r, where a, b, q, and r are integers. Then gcd(a,b)=gcd(b,r)
- Proof: Suppose d divides both a and b. Recall if d|a and d|b, then d|a-bk for some integer k. It follows that d also divides abq=r. Hence, any common division of a and b is also a common division of b and r
- Suppose that d divides both b and r, then d also divides bq+r=a. Hence, any common divisor of b and r is also common divisor of a and b
- Consequently, gcd(a, b)=gcd(b,r)

Euclidean algorithm

• Suppose a and b are positive integers, $a \ge b$. Let $r_0 = a$ and $r_1 = b$, we successively apply the division algorithm

$$r_{0} = r_{1}q_{1} + r_{2}, 0 \le r_{2} < r_{1}$$

$$r_{1} = r_{2}q_{2} + r_{3}, 0 \le r_{3} < r_{2}$$
...
$$r_{n-2} = r_{n-1}q_{n-1} + r_{n}, 0 \le r_{n} < r_{n-1}$$

$$r_{n-1} = r_{n}q_{n}$$

$$\gcd(a,b) = \gcd(r_{0}, r_{1}) = \gcd(r_{1}, r_{2}) = \dots = \gcd(r_{n-2}, r_{n-1})$$

$$= \gcd(r_{n-1}, r_{n}) = \gcd(r_{n}, 0) = r_{n}$$

 Hence, the gcd is the last nonzero remainder in the sequence of divisions

Find the GCD of 414 and 662

$$662=414 \cdot 1+248$$
 $414=248 \cdot 1+166$
 $248=166 \cdot 1+82$
 $166=82 \cdot 2 + 2$
 $gcd(a,b)=gcd(b,r)$
 $82=2 \cdot 41$
 $gcd(414,662)=2$ (the last nonzero remainder)

The Euclidean algorithm

procedure gcd(a, b: positive integers)

```
x := a
y:=b
while (y≠0)
begin
    r:=x mod y
    x:=y
    y:=r
end {gcd(a,b)=x}
```

The time complexity is O(log b) (where a ≥ b)

4.5 Applications of congruence

- Hashing function: h(k) where k is a key
- One common function: h(k)=k mod m where m is the number of available memory location
- For example, m=111,
 - h(064212848)=064212848 mod 111=14
 - h(037149212)=037149212 mod 111=65
- Not one-to-one mapping, and thus needs to deal with collision
 - $h(107405723)=107405723 \mod 111 = 14$
 - Assign to the next available memory location

Pseudorandom numbers

- Generate random numbers
- The most commonly used procedure is the linear congruential method
 - Modulus m, multiple a, increment c, and seed x_0 , with 2≤a<m, 0 ≤c<m, and 0≤ x_0 <m
 - Generate a sequence of pseudorandom numbers $\{x_n\}$ with $0 \le x_n < m$ for all n, by $x_{n+1} = (ax_n + c) \mod m$

- Let m=9, a=7, c=4, x_0 =3
 - $-x_1=7x_0+4 \mod 9=(21+4) \mod 9=25 \mod 9=7$
 - $-x_2=7x_1+4 \mod 9=(49+4) \mod 9=53 \mod 9=8$
 - $-x_3=7x_2+4 \mod 9=(56+4) \mod 9=60 \mod 9=6$
 - $-x_4=7x_3+4 \mod 9=(42+4) \mod 9=46 \mod 9=1$
 - $-x_5=7x_4+4 \mod 9=(7+4) \mod 9=11 \mod 9=2$
 - $-x_6=7x_5+4 \mod 9=(14+4) \mod 9=18 \mod 9=0$
 - $-x_7=7x_6+4 \mod 9=(0+4) \mod 9=4 \mod 9=4$
 - $-x_8=7x_7+4 \mod 9=(28+4) \mod 9=32 \mod 9=5$
 - $-x_9=7x_8+4 \mod 9=(35+4) \mod 9=11 \mod 9=3$
- A sequence of 3, 7, 8, 6, 1, 2, 0, 4, 5, 3, 7, 8, 6, 1, 2, 0, 4, 5, 3, ...
- Contains 9 different numbers before repeating

 $x_{n+1}=(ax_n+c) \mod m$

4.6 Cryptology

 One of the earliest known use is by Julius Caesar, shift each letter by 3

$$f(p)=(p+3) \mod 26$$

- Translate "meet you in the park"
- **-124419 241420 813 1974 1501710**
- **-157722 11723 1116 22107 1832013**
- "phhw brx lq wkh sdun"
- To decrypt, $f^{-1}(p)=(p-3) \mod 26$

- Other options: shift each letter by k
 - $f(p)=(p+k) \mod 26$, with $f^{-1}(p)=(p-k) \mod 26$
 - $f(p) = (ap+k) \mod 26$

RSA cryptosystem

- Each individual has an encryption key consisting of a modulus n=pq, where p and q are large primes, say with 200 digits each, and an exponent e that is relatively prime to (p-1)(q-1) (i.e., gcd(e, (p-1)(q-1))=1)
- To transform M: Encryption: C=M^e mod n, Decryption: C^d=M
 (mod pq)
- The product of these primes n=pq, with approximately 400 digits, cannot be factored in a reasonable length of time (the most efficient factorization methods known as of 2005 require billions of years to factor 400-digit integers)